base-4.12.0.0: Basic libraries

Copyright(c) Ross Paterson 2010
LicenseBSD-style (see the file LICENSE)
Maintainerlibraries@haskell.org
Stabilityexperimental
Portabilityportable
Safe HaskellTrustworthy
LanguageHaskell2010

Data.Functor.Compose

Description

Composition of functors.

Since: base-4.9.0.0

Synopsis

Documentation

newtype Compose f g a infixr 9 #

Right-to-left composition of functors. The composition of applicative functors is always applicative, but the composition of monads is not always a monad.

Constructors

Compose infixr 9 

Fields

Instances
Functor f => Generic1 (Compose f g :: k -> Type) # 
Instance details

Defined in Data.Functor.Compose

Associated Types

type Rep1 (Compose f g) :: k -> Type #

Methods

from1 :: Compose f g a -> Rep1 (Compose f g) a #

to1 :: Rep1 (Compose f g) a -> Compose f g a #

(Functor f, Functor g) => Functor (Compose f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

fmap :: (a -> b) -> Compose f g a -> Compose f g b #

(<$) :: a -> Compose f g b -> Compose f g a #

(Applicative f, Applicative g) => Applicative (Compose f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

pure :: a -> Compose f g a #

(<*>) :: Compose f g (a -> b) -> Compose f g a -> Compose f g b #

liftA2 :: (a -> b -> c) -> Compose f g a -> Compose f g b -> Compose f g c #

(*>) :: Compose f g a -> Compose f g b -> Compose f g b #

(<*) :: Compose f g a -> Compose f g b -> Compose f g a #

(Foldable f, Foldable g) => Foldable (Compose f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

fold :: Monoid m => Compose f g m -> m #

foldMap :: Monoid m => (a -> m) -> Compose f g a -> m #

foldr :: (a -> b -> b) -> b -> Compose f g a -> b #

foldr' :: (a -> b -> b) -> b -> Compose f g a -> b #

foldl :: (b -> a -> b) -> b -> Compose f g a -> b #

foldl' :: (b -> a -> b) -> b -> Compose f g a -> b #

foldr1 :: (a -> a -> a) -> Compose f g a -> a #

foldl1 :: (a -> a -> a) -> Compose f g a -> a #

toList :: Compose f g a -> [a] #

null :: Compose f g a -> Bool #

length :: Compose f g a -> Int #

elem :: Eq a => a -> Compose f g a -> Bool #

maximum :: Ord a => Compose f g a -> a #

minimum :: Ord a => Compose f g a -> a #

sum :: Num a => Compose f g a -> a #

product :: Num a => Compose f g a -> a #

(Traversable f, Traversable g) => Traversable (Compose f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Compose f g a -> f0 (Compose f g b) #

sequenceA :: Applicative f0 => Compose f g (f0 a) -> f0 (Compose f g a) #

mapM :: Monad m => (a -> m b) -> Compose f g a -> m (Compose f g b) #

sequence :: Monad m => Compose f g (m a) -> m (Compose f g a) #

(Alternative f, Applicative g) => Alternative (Compose f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

empty :: Compose f g a #

(<|>) :: Compose f g a -> Compose f g a -> Compose f g a #

some :: Compose f g a -> Compose f g [a] #

many :: Compose f g a -> Compose f g [a] #

(Show1 f, Show1 g) => Show1 (Compose f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Compose f g a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Compose f g a] -> ShowS #

(Read1 f, Read1 g) => Read1 (Compose f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Compose f g a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Compose f g a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Compose f g a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Compose f g a] #

(Ord1 f, Ord1 g) => Ord1 (Compose f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

liftCompare :: (a -> b -> Ordering) -> Compose f g a -> Compose f g b -> Ordering #

(Eq1 f, Eq1 g) => Eq1 (Compose f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

liftEq :: (a -> b -> Bool) -> Compose f g a -> Compose f g b -> Bool #

(Functor f, Contravariant g) => Contravariant (Compose f g) # 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> Compose f g b -> Compose f g a #

(>$) :: b -> Compose f g b -> Compose f g a #

(Eq1 f, Eq1 g, Eq a) => Eq (Compose f g a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

(==) :: Compose f g a -> Compose f g a -> Bool Source #

(/=) :: Compose f g a -> Compose f g a -> Bool Source #

(Typeable a, Typeable f, Typeable g, Typeable k1, Typeable k2, Data (f (g a))) => Data (Compose f g a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Compose f g a -> c (Compose f g a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Compose f g a) #

toConstr :: Compose f g a -> Constr #

dataTypeOf :: Compose f g a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Compose f g a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Compose f g a)) #

gmapT :: (forall b. Data b => b -> b) -> Compose f g a -> Compose f g a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Compose f g a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Compose f g a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) #

(Ord1 f, Ord1 g, Ord a) => Ord (Compose f g a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

compare :: Compose f g a -> Compose f g a -> Ordering Source #

(<) :: Compose f g a -> Compose f g a -> Bool Source #

(<=) :: Compose f g a -> Compose f g a -> Bool Source #

(>) :: Compose f g a -> Compose f g a -> Bool Source #

(>=) :: Compose f g a -> Compose f g a -> Bool Source #

max :: Compose f g a -> Compose f g a -> Compose f g a Source #

min :: Compose f g a -> Compose f g a -> Compose f g a Source #

(Read1 f, Read1 g, Read a) => Read (Compose f g a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

readsPrec :: Int -> ReadS (Compose f g a) #

readList :: ReadS [Compose f g a] #

readPrec :: ReadPrec (Compose f g a) #

readListPrec :: ReadPrec [Compose f g a] #

(Show1 f, Show1 g, Show a) => Show (Compose f g a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

showsPrec :: Int -> Compose f g a -> ShowS #

show :: Compose f g a -> String #

showList :: [Compose f g a] -> ShowS #

Generic (Compose f g a) # 
Instance details

Defined in Data.Functor.Compose

Associated Types

type Rep (Compose f g a) :: Type -> Type #

Methods

from :: Compose f g a -> Rep (Compose f g a) x #

to :: Rep (Compose f g a) x -> Compose f g a #

type Rep1 (Compose f g :: k -> Type) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

type Rep1 (Compose f g :: k -> Type) = D1 (MetaData "Compose" "Data.Functor.Compose" "base" True) (C1 (MetaCons "Compose" PrefixI True) (S1 (MetaSel (Just "getCompose") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (f :.: Rec1 g)))
type Rep (Compose f g a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

type Rep (Compose f g a) = D1 (MetaData "Compose" "Data.Functor.Compose" "base" True) (C1 (MetaCons "Compose" PrefixI True) (S1 (MetaSel (Just "getCompose") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (f (g a)))))