
Union Types
in Flow & Reason

Jake Zimmerman

May 17, 2018

Union types are Powerful!

Union Types: An Example
const impossible = <T>(x: empty): T =>

throw new Error('impossible!');

type AorB = 'A' | 'B';

const whichBranch = (x: AorB): string => {
switch (x) {

case 'A':
return "In branch A";

case 'B':
return "In branch B";

default:
return impossible(x);

}
}

Union types in Flow have a cost :(

Outline

▶ Set up a problem that union types can solve
▶ Further motivate why we want union types
▶ Examine the cost of union types in Flow
▶ Show how Reason avoids this cost
▶ Bonus: compare other compile-to-JS languages

Union Types in a React Component

Consider a simple two-factor authentication modal:

We can model this with a union type
type Screen =

| 'LoadingScreen'
| 'CodeEntryScreen'
| 'SuccessScreen';

type State = {
// ...
screen: Screen,

};

Benefits to using a union type:
▶ Documentation in the types:
“These are all the cases.”

▶ More information for the compiler!
Flow can warn us when we’ve forgotten a case.

Initial Feedback? Add a “cancel” button
After showing it to our team, someone suggests adding a
cancel button:

In particular: no need for a cancel button on the last screen!

needsCancelButton : Initial Implementation
const needsCancelButton = (screen: Screen): boolean => {

// Recall: 'SuccessScreen' is final, so it doesn't
// make sense to have a cancel button.
return screen !== 'SuccessScreen';

};

needsCancelButton : Initial Implementation
const needsCancelButton = (screen: Screen): boolean => {

// Recall: 'SuccessScreen' is final, so it doesn't
// make sense to have a cancel button.
return screen !== 'SuccessScreen';

};

render() {
needsCancelButton(this.state.screen) &&

<CancelButton onClick={this.handleClick} />

// Look at this.state.screen, then
// render <LoadingScreen />
// ... OR <CodeEntryScreen />
// ... OR <SuccessScreen />

}

Adding a 'FailureScreen'

Our Updated Screen Type
type Screen =

| 'LoadingScreen'
| 'CodeEntryScreen'
| 'SuccessScreen'
// New case to handle too many wrong attempts:
| 'FailureScreen';

Our Updated Screen Type
type Screen =

| 'LoadingScreen'
| 'CodeEntryScreen'
| 'SuccessScreen'
// New case to handle too many wrong attempts:
| 'FailureScreen';

render() {
// ...
// Look at this.state.screen, then
// render <LoadingScreen />
// ... OR <CodeEntryScreen />
// ... OR <SuccessScreen />
// ... OR <FailureScreen />

}

Wait, what’s that cancel button doing there?

We forgot to update needsCancelButton

There shouldn’t have been a cancel button on
'FailureScreen' .

Ideally, Flow tells us all places that need to be updated when
adding a new case.

This time, Flow couldn’t warn us that our function needed to
be updated:

const needsCancelButton = (screen: Screen): boolean => {
return screen !== 'SuccessScreen';

};

First reaction: just fix the bug.

const needsCancelButton = (screen: Screen): boolean => {
return (

screen !== 'SuccessScreen' ||
screen !== 'FailureScreen'

);
};

But we can do better! Let’s prevent future bugs from
happening…

switch : Taking Advantage of Exhaustiveness
const needsCancelButton = (screen: Screen): boolean => {

switch (screen) {
case 'LoadingScreen':

return true;
case 'CodeEntryScreen':

return true;
case 'SuccessScreen':

return false;
default:

// [flow]: Error: Cannot call `impossible` with
// `screen` bound to `x` because string literal
// `FailureScreen` is incompatible with empty
return impossible(screen);

}
}

Takeaway: Only use union types with switch !

Every time we use a union without a switch statement,
Flow can’t tell us when we’re missing something.

Always1 use switch statements with unions!

1Of course, use your best judgement. Sometimes you don’t want to
use a switch . But know that you’re giving up static guarantees!

Correctness, but at what cost?
// ----- before: 62 bytes (minified) -----

const needsCancelButton = (screen) => {
return screen !== 'SuccessScreen';

};

 

Correctness, but at what cost?
// ----- after: 240 bytes (minified) -----
const impossible = (x) => {

throw new Error('This case is impossible.');
};
const needsCancelButton = (screen) => {

switch (screen) {
case 'LoadingScreen':

return true;
case 'CodeEntryScreen':

return true;
case 'SuccessScreen':

return false;
default:

return impossible(screen);
}

};

Correctness, at the cost of bundle size!

needsCancelButton is a bit of a pathological case:
▶ Short case bodies.
▶ Only one case is different.
▶ Long-ish string constants.

But still: I’ve definitely felt the impact in the wild!

Types and Optimizing Compilers

Types promise better compiled code.

Proponents of types argue:

“If we write code using higher-level abstractions, then
compilers can do more optimizations for us.”

Flow is not a compiler

We’ve seen this isn’t a promise Flow gives us.

Flow isn’t a compiler, only a type checker.

By stripping the types, Babel / Webpack / Uglify lose access
to making potential optimizations.

In particular: we threw away the exhaustiveness guarantee!

Enter: Reason

Reason (i.e., ReasonML) brings OCaml tools to the web.

OCaml offers:
▶ Mature optimizing compiler
▶ Wide ecosystem of packages
▶ Great type system

Reason adds:
▶ Tight JavaScript interop (via BuckleScript)
▶ Familiar syntax (looks like Flow!)

needsCancelButton in Reason

type screen =
| LoadingScreen
| CodeEntryScreen
| SuccessScreen;

let needsCancelButton = (screen: screen): bool => {
switch (screen) {
| LoadingScreen => true;
| CodeEntryScreen => true;
| SuccessScreen => false;
}

};

Reason looks pretty familiar!

Key differences compared to Flow:
▶ Custom datatype, instead of abusing strings
▶ Replaced case keyword with pipe in switch
▶ Exhaustiveness by default

The | instead of case is nice: we can copy / paste our type
definition to kickstart our switch statement!

Reason’s Generated Code

// Generated by BUCKLESCRIPT VERSION 3.0.1
'use strict';

function needsCancelButton(status) {
if (status !== 2) {

return false;
} else {

return true;
}

}
// ---------------------------------------

Entire switch statement optimized down to a single if !
'SuccessScreen' shortened to 2 !

Reason’s Generated Code + uglify

"use strict";
function needsCancelButton(n){

return !(n>=2)
}

Uglify can shorten it even further: no if statement!

This is even better than our hand-written implementation.

Yet, we didn’t sacrifice safety or readability!

Safety AND Performance

Reason’s type system delivered on the promise of types in a
way Flow couldn’t:

▶ We wrote high-level, expressive code.
▶ The type checker gave us strong guarantees about the

correctness (exhaustiveness) of our code.
▶ The compiler translated that all to tiny, performant code.

Bonus: Comparing Other Languages

TypeScript
var Screen_; (function (Screen_) {

Screen_[Screen_["LoadingScreen"] = 0] = "LoadingScreen";
Screen_[Screen_["CodeEntryScreen"] = 1] = "CodeEntryScreen";
Screen_[Screen_["SuccessScreen"] = 2] = "SuccessScreen";

})(Screen_ || (Screen_ = {}));
var impossible = function (x) {

throw new Error('This case is impossible.');
};
var needsCancelButton = function (screen) {

switch (screen) {
case Screen_.LoadingScreen: return true;
case Screen_.CodeEntryScreen: return true;
case Screen_.SuccessScreen: return false;
default: return impossible(screen);

}
};

PureScript
"use strict";
var LoadingScreen = (function () {

function LoadingScreen() {};
LoadingScreen.value = new LoadingScreen();
return LoadingScreen;

})();
var CodeEntryScreen = (function () {

function CodeEntryScreen() {};
CodeEntryScreen.value = new CodeEntryScreen();
return CodeEntryScreen;

})();
var SuccessScreen = (function () {

function SuccessScreen() {};
SuccessScreen.value = new SuccessScreen();
return SuccessScreen;

})();
var needsCancelButton = function (v) {

if (v instanceof LoadingScreen) {
return true;

};
if (v instanceof CodeEntryScreen) {

return true;
};
if (v instanceof SuccessScreen) {

return false;
};
throw new Error("Failed pattern match at Main line 10, column 1");

};

Elm

var _user$project$Main$needsCancelButton = function (page) {
var _p0 = page;
switch (_p0.ctor) {

case 'LoadingScreen':
return true;

case 'CodeEntryScreen':
return true;

default:
return false;

}
};
var _user$project$Main$SuccessScreen = {ctor: 'SuccessScreen'};
var _user$project$Main$CodeEntryScreen = {ctor: 'CodeEntryScreen'};
var _user$project$Main$LoadingScreen = {ctor: 'LoadingScreen'};

Further Reading

▶ Case Exhaustiveness in Flow
▶ Union Types in Flow & Reason
▶ Tagged Unions in Flow
▶ Pattern Matching in Reason

https://blog.jez.io/flow-exhaustiveness/
https://blog.jez.io/union-types-flow-reason/
https://flow.org/en/docs/types/unions/#toc-disjoint-unions
https://reasonml.github.io/docs/en/pattern-matching.html

	Union types are Powerful!
	Union types in Flow have a cost :(
	Types and Optimizing Compilers
	Bonus: Comparing Other Languages

